IDENTIFICATION OF AN AUTOREGRESSIVE MODEL FOR MULTIVARIATE ONE-DIMENSIONAL NONSTATIONARY GAUSSIAN RANDOM PROCESSES
نویسندگان
چکیده
منابع مشابه
Model Identification for Infinite Variance Autoregressive Processes
We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside...
متن کاملA Generalized Convolution Model for Multivariate Nonstationary Spatial Processes
We propose a constructive method for specifying flexible classes of nonstationary stochastic models for multivariate spatial data. The method is based upon convolutions of spatially varying covariance functions and produces mathematically valid covariance structures. This method generalizes the convolution approach suggested by Majumdar and Gelfand (2007) to extend multivariate spatial covarian...
متن کاملEstimation for Partially Nonstationary Multivariate Autoregressive Models with Conditional Heteroskedasticity
where $‘s inre r*onst,ant matricaes; detI{@(z)} = 11 @,x . w * $JP[ = 0 has ci 5 771, urrit roots and ‘I’ = 711 d roots omside the urrit, circle: tPt = ((1 it, 7 c+> is a sequcnce of independent1 and idcntically distlributled (i.i.tl) matrices with mean zero and nonnegativc covarianc~e IC[ /le+&) ~f’(&)] = 0; pit is an i.i.d ramlom vector witIh mean zero and positive covariance E ( etef j = CA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Doboku Gakkai Ronbunshu
سال: 1990
ISSN: 0289-7806,1882-7187
DOI: 10.2208/jscej.1990.416_349